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has been found to be 5. Values of the coefficients a; (are shown
in Table I. The following transformation formulas are helpful
in restricting K/K’ to the interval (0,1)

Kk = K'(k) K(k) = K'(k) K+ k2=1 ()

Equation (2) is valuable in practice, since it allows the syn-
thesis of all transmission lines to be realized. A few of them are
shown in Fig. 1.

In fact, for a given characteristic impedance, the correspond-
ing geometric dimensions of the line can be calculated rapidly
by means of an electronic pocket calculator. Moreover, since
the two developments are valid for all values of the character-
istic impedance, one can know immediately if the realization of
the latter is possible or not for a chosen geometrical configura-
tion.

Hence, provided that the dielectric interfaces of geometrical
configurations do not present any difficulty in conformal map-
ping, analytical expressions obtained can be easily manipulated,
without having to resort to tables.

We hope that these synthesis formulas will find a place in the
bibliography and allow engineers to make use of elliptic inte-
grals with less hesitation.
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A Two- or Three-Dimensional Green’s Function Which
Can Be Applied to Hyperfrequency Microelectronic
Transmission Lines

RAYMOND CRAMPAGNE anp JEAN-LOUIS GUIRAUD

Knowing Green’s function and the charge density found on
different conductors, the diverse capacities [1]-[4] can eventually
be calculated by solving an integral equation. This has been
dealt with only for simple dielectric-conductor configurations.
In Coen’s article [5], the integral representation of log (Z) is
employed in calculating Green’s function for microstrips (with

or without an upper ground plane). Electrostatically speaking, .

the boundary conditions along conductors or dielectric inter-
faces are represented by means of infinite charge series.

We will treat two- or three-dimensional problems in exactly
the same way; microstrip [Fig. 1(b) and (c)], triplate [Fig. 1(a)],
and coplanar [Fig. 1(d) and (e)] types of transmission lines in a
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quasi-TEM approximation can be treated in the two-dimen-
sional case [1), [2]. As indicated in Fig. 1, these lines can also
be composed of several dielectrics. The three-dimensional case is
employed in the calculation of capacitances or inductances of
equivalent circuits representing discontinuities of certain lines
[Fig. 1(f)} or the capacitances obtained by the localized element
technique [Fig. 1(g)].

The aim is to find an integral representation of Green’s
functions in space with several dielectrics: log (Z) or 1/r depend-
ing upon whether the Green’s functions in free space are a
two- or three-dimensional problem. Z = y + jx is a point in
the Z plane which represents the cross section of a line charge;

2 = p? 4+ u? represents the distance between the point field
and the point source of a point charge.

In the case of a homogeneous dielectric body of permittivity
&, the integral representation of Green’s function for a line charge
[5] situated at x = 0, y = « or a point charge [6] situated at
p = 0, u = « can be written as

1 [“exp [-Ay — a]]cos Ax —
0 A

#(x,y) = exp [-4]

or
o) = f Jo(hp) exp [~ Alu = ] di. 0
4758 0

All further developments will be based upon the following
remark: A multiplication within the integral of expressions [1]
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Fig. 2. Point charge in an inhomogeneous medium of four dielectrics.

by any function f;(1) of the variable A will always give rise to a
potential function which satisfies Poisson’s equation.

The geometric configuration treated here consists of four
dielectrics and a point or line charge, depending on the case
to be considered (Fig. 2). The choice is clear: The geometrical
configurations of Fig. 1(a)~(g) are only special cases. Electro-
statically speaking, a perfect conductor can be simulated by
imposing a dielectric constant of infinite value to the medium.

Therefore, in each dielectric medium characterized by an
index i (i = 0-3), we will try to express Green’s function in the
following form:

Line Charge
£ = F*()
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writing the condition at infinity and the boundary conditions
along the dielectric interfaces: continuity of the potential and the
normal derivatives of the electric field. Since the initial equations
are strictly identical, the calculations lead to identical expres-
sions for the functions F;*(4) and G;*(1), the conditions along
dielectric interfaces being satisfied for all values of x or p. Thus

FE() = GE() Vi

The convergence of the integrals (2) can be verified after the
f;(2) are found.
In order to simplify notations, let

*
g = b k= L L vii=123
&1 &
F(k,k,k3) = 1
1572973 1 + FF

with
FF= k1k2 €Xp [—Zlbl] + k2k3 exp [—21b2]
+ k1k3 exp [—ZZ(bl -+ b2)]. (3)

Expressions of the functions F;¥(A) can then be written as
Fi~(A) = —k; exp [Ma — 2b,)1{k, + k3 exp [—24b,]}

« {1 + ky exp [-2M(a = ao)}F(k,,k2,k3)

+ ky exp [Ma — 2a ~ ag))] @
F,*(A) = —exp [M(—2a; + @)]{k, + k3 exp [—245,]}

< {1 + kyexp [-2Ma — ao)]}

x Flkykyks).

With the infinite series of images converging uniformly, we
can develop F(k,k,,k;) in powers of k; (/ = 1-3). According
to a commonly used method [7], the expression obtained is
introduced in (2) and the integral and summation signs are
interchanged. Note that the potential of interest in medium 1
can be identified with that created in an infinite homogeneous
medium (of dielectric constant &;) by an initial charge and a
quadruple infinity of images. The amplitude and position of
these charges are shown in Table 1.

The potential analytic expression for medium 1 is cumbersome,

i

2ne,

Point Charge
[) = GE@)

¢ = — Jm {Gim(D exp [—Au] + G,F(A) exp [+ Au]
4re; Jo
+ exp [—Au — a|]6,,13o(4p) dA

1, fori=1
51.1 = .
0, fori # 1.

The term &;,; signifies that the only charge having a physical
meaning is found in the medium of dielectric constant &;. Note
that it is sufficient to know the potential of the medium 1 in
order to characterize the charge density of conductors [Fig.
1(a)~g)].

The functions F;*(4) and G,=(1) (i = 0-3) are determined by

1 J“’ {Fim(Wexp [-4y] + F* (W) exp [+Ay] + exp [—Aly = «f1d;,1} cos Ax
]

1 dA. Q)

however, we remark inside the dielectric medium that there is an
only charge, the initial charge. That is the singularity. Then,
we can write for a line charge situated in {p = 0, u = a}

Joua) = ——log (o7 + (& — @} + H(pu)
27[81

where H(p,u,a) is a continuous function. That is very important
for computational purposes.

The calculations justify the passage of a two-dimensional
case to a three-dimensional case by a mere change in the formulas
of (1/2ng) log p by (1/4ne) - (1/r). The fictitious charges are
evidently found exterior to domain 1, hence allowing the verifica-
tion of Gaussian theorem.

In the case of a triplate configuration with an inhomogeneous
dielectric medium [Fig. 1(a)], the following conditions must be
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imposed upon the general configuration (Fig. 2) in order to take
into account the conductors: .

g — ®© & » 00,
This implies that k; = 1 and k3 = 1; the expressions (16) given
by Coen can then be found.

Without having to go into details, we would like to mention
the practical problems which are solved (in using the results
shown in Table I).

In a three-dimensional case, we studied the influence of an
upper ground plane and a medium of several dielectrics on the
elements of an equivalent circuit for discontinuities. The curves
obtained recover exactly those given in (3).
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In the two-dimensional case, this generalized method of
images allows the propagation in structures shown in Fig. 1(b)-(d)
to be treated [4]. Moreover, for coplanar conductors on a
dielectric substrate, the formulas of Table I can be considerably
simplified.

As an hypothesis, let &, = &3 (k3 = 0). The configuration
[Fig. 1(e)] can then be easily treated. The amplitudes of charges
decrease extremely rapidly as shown in Table II.

The geometrical configuration [Fig. 1(d)] allows a configura-
tion identical to the preceding one to be treated but sandwiched.

We can conclude that depending upon the chosen integral
representation, this method allows the two- or three-dimensional
case to be treated by avoiding the singularity of the point source.
This method is very interesting in solving open or semiopen
problems. Knowing Green’s function in a four dielectric medium,
a general program valid for most transmission lines used in
hyperfrequency microelectronics has been realized.
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The Locus of Points of Constant VSWR When
Renormalized to a Different Characteristic Impedance

J. A. G. MALHERBE

Abstract—The locus of points of constant VSWR with respect to an
impedance Z;, when measured with equipment of characteristic im-
pedance Z,, other than Z, is found to be a circle that is easily constructed
on a Smith chart. The use of a transparent overlay with various such
circles converts any network analyzer with a Smith chart display to
read swept VSWR values to the new impedance.

In cases where the VSWR of a device is specified with respect
to an impedance Z; other than the characteristic impedance of
the measuring equipment Z, (50 Q3), as is often the case with TV
antenna equipment or cables, the VSWR has to be calculated
from complex impedance measurements on a point-by-point
basis. Thus the advantages of having a network analyzer with a
sweep oscillator and Smith chart display are lost because the
normal constant VSWR circles would refer to Z, rather than
Z,. This letter shows that the locus of points of constant VSWR
to Z, are again circles, and that they can be very easily con-
structed, enabling the use of a transparent overlay and thus
regaining the original network analyzer advantages.
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