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has been found to be 5. Values of the coefficients ai (are shown

in Table I. The following transformation formulas are helpful

in restricting K/K’ to the interval (0,1)

K(k’) = K’(k) K(k) = K’(k’) k’+k’’=l. (3)

Equation (2) is valuable in practice, since it allows thesyn-

thesis of all transmission lines to be realized. A few of them are

shown in Fig. 1.

In fact, for a given characteristic impedance, the correspond-

ing geometric dimensions of the line can be calculated rapidly

by means of an electronic pocket calculator. Moreover, since

the two developments are valid for all values of the character-

istic impedance, one can know immediately if the realization of

the latter is possible or not for a chosen geometrical configura-

tion.

Hence, provided that the dielectric interfaces of geometrical

configurations do not present any difficulty in conformal map-

ping, analytical expressions obtained can be easily manipulated,

without having to resort to tables.

We hope that these synthesis formulas will find a place in the

bibliography and allow engineers to make use of elliptic inte-

grals with less hesitation.

[1]

[2]

[3]

[4]
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A Two- or Three-Dimensional Green’s Function Which

Can Be Applied to Hyperfrequency Mkroelectronic

Transmission Lines

RAYMOND CRAMPAGNE AND JEAN-LOUIS GUIRAUD

Knowing Green’s function and the charge density found on

different conductors, the diverse capacities [1]- [4] can eventually

be calculated by solving an integral equation. This has been

dealt with only for simple dielectric-conductor configurations.

In Coen’s article [5], the integral representation of log (Z) is

employed in calculating Green’s function for microstrips (with

or without an upper ground plane). Electrostatically speaking,

the boundary conditions along conductors or dielectric inter-

faces are represented by means of intinite charge series.

We will treat two- or three-dimensional problems in exactly

the same way; microstrip [Fig. l(b) and (c)], triplate [Fig. l(a)],

and coplanar [Fig. 1(d) and (e) ] types of transmission lines in a
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quasi-TEM approximation can be treated in the two-dimen-

sional case [1], [2]. As indicated in Fig. 1, these lines can also

be composed of several dielectrics. The three-dimensional case is

employed in the calculation of capacitances or inductances of

equivalent circuits representing discontinuities of certain lines

[Fig. l(~)] or the capacitances obtained by the localized element

technique [Fig. l(g)].

The aim is to find an integral representation of Green’s

functions in space with several dielectrics: log (Z) or I/r depend-

ing upon whether the Green’s functions in free space are a

two- or three-dimensional problem. Z = y + jx is a point in

the Z plane which represents the cross section of a line charge;

r 2 = P2 + U2 represents the distance between the point field

and the point source of a point charge.

In the case of a homogeneous dielectric body of permittivity

8, the integral representation of Green’s function for a line charge

[5] situated at x = O, y = a or a point charge [6] situated at

p = O, u = u can be written as

Jmexp [–A\y – al] cos Ax – exp [–A] ~1
@(x,y) = z+ o

A

or

Jd(p,u) = ~ m .lO(lp) exp [–I]u - al] dl.
4RE o

(1)

All further developments will be based upon the following

remark: A multiplication within the integral of expressions [1]
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Fig. 2. Point charge in an inhomogeneous medium of four dielectrics.

by any function A(l) of the variable 2 will always give rise to a

potential function which satisfies Poisson’s equation.

The geometric configuration treated here consists of four

dielectrics and a point or line charge, depending on the case

to be considered (Fig. 2). The choice is clear: The geometrical

configurations of Fig. 1(a)-(g) are only special cases. Electro-

statically speaking, a perfect conductor can be simulated by

imposing a dielectric constant of infinite value to the medium.

Therefore, in each dielectric medium characterized by an

index i (i = O-3), we will try to express Green’s function in the

following form:

Line Charge

A(a) = F**(A)

writing the condition at infinity and the boundary conditions

along the dielectric interfaces: continuity of the potential and the

normal derivatives of the electric field. Since the initial equations

are strictly identical, the calculations lead to identical expres-

sions for the functions F~*(l) and Gi* (A), the conditions along

dielectric interfaces being satisfied for all values of x or p. Thus

Ft*(J) = G~*(l) Vi.

The convergence of the integrals (2) can be verified after the

J(2) are found.

In order to simplify notations, let

&~*=~kt=&~ Vi, i = 1,2,3
q-l &~* + 1

F(k1,k2,kJ = ~F

with

FF = klkz exp [–2AbL ] + kzk~ exp [–2Ab2]

-I- klk~ exp [–2A(b1 + bJ]. (3)

Expressions of the functions Ft*(l) can then be written as

F1-(A) = –kl exp [A(a – 2b1)]{k2 -t- k~ exp [–2Ab2]}

o {1 + kl exp [–2A(a – ao)]}F(kl,k,,kJ

+ kl exp [I(ct – 2(a – so))] (4)

F,+(A) = –exp [1(–2a1 + a)]{k, + k~ exp [–21b2]}

. {1 + kl exp [–21(Lx – so)]}

X F(k1,k2,kJ.

With the infinite series of images converging uniformly, we

can develop F(kl ,k2,kJ in powers of k~ (i = 1-3). According

to a commonly used method [7], the expression obtained is

introduced in (2) and the integral and summation signs are

interchanged. Note that the potential of interest in medium 1

can be identified with that created in an infinite homogeneous

medium (of dielectric constant 81) by an initial charge and a

quadruple infinity of images. The amplitude and position of

these charges are shown in Table I.

The potential analytic expression for medium 1 is cumbersome,

4i=L Jm{Fi-(2)exp [–ly] + Fl+(l) exp [+ly] + exp [–lly – al]~t,l} cos lx ~1
(2)

2rr&1 ~ A

Point Charge

$,= Q- Jm{G,-(l) exp [–h] + G,+(A) exp [+ Au]
4rc&1 o

+ exp [–l\u – al ]iJi,l}.To(lp) dd

(at,, = 1’ fori=l

o, fori # 1.

The term 6*, ~ signifies that the only charge having a physical

meaning is found in the medium of dielectric constant 81. Note

that it is sufficient to know the potential of the medium 1 in

order to characterize the charge density of conductors [Fig.

l(a)-(g) ].

The functions Fi* (1) and Gi*(l) (i = O-3) are determined by

however, we remark inside the dielectric medium that there is an

only charge, the initial charge. That is the singularity. Then,

we can write for a line charge situated in {p = O, u = a}

#(p,u,u) = J- log { JP2 + (u – a)2 } + H(p,u,a)
2?r&~

where H(p,u,a) is a continuous function. That is very important

for computational purposes.

The calculations justify the passage of a two-dimensional

case to a three-dimensional case by a mere change in the formulas

of (1/2rre) log p by (1/4rre) o(l/r). The fictitious charges are

evidently found exterior to domain 1, hence allowing the verifica-

tion of Gaussian theorem.

In the case of a triplate configuration with an inhomogeneous

dielectric medium [Fig. l(a) ], the following conditions must be
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TABLE I

+1

~_~, i+ I ~1 /. ~ (i- j+k) .k2 @]) ,*3 (i-k)

111

(-l)i+l C:$ kl (i-j+k) .k~ . k3(1+i-k)

(-1)1+1 c] + k
( l+i- j+k)

Ijl
. k2(1+]).+c#=l

( 1+1- j+k)

(-l) 1+1 C] f? k ,k; .k3(1+1-k)
111

‘1

(-l)i+l C] +k (1+1-]+k) (1+I) (1 - k)
1,1 .k2 .k3

1+1 ~1 # k
[2+i- j+k) .k2 [ 1+I) .k!,-k

(-l)
i]l

3

(-1)
i+l ~1 ~ k (1+1-j+k) .k~ . k3(1+ 1-k

ijl

(-1) I+IC: $k1(2+1-]+k) .kI ( 1+.-k
2 ‘3

POS1TION

4

-d+2a,+2b1(i-j+k) +2b2 (i-k)

-4+2%+h1(i-j+k) +2b2 (i-k)

~+hl(l+i-j+k) +2b2 (i-k)

~+hl(l+i-]+k) +%2 (l+ i-k)

.4 +.zao

i4-2b1(1+i-j+k) - 212 (i- k)

<+2ao-201(1+i-]+k) - b2 (i-k)

A-i%l (1+1-j+k) - ~2 (l+i-k)

4+2ao-bl (1+~-]+k) - h2(1+i - k)

1= 0,=2
,=o, i

k=O, j

i!q s
j! (i-j)!

En - %-l
kn = n= 1, 2, 3.

s n +En-1 ‘

TABLE II

AMPLITUDE

+1

+ kl

+k2i+l
1

2i
+ kl

+ k:i

+k2i-1
1

POSITION

h

-h

-h-2hi

+h-2hi

+h+2hi

-h+2hi

imposed upon the general configuration (Fig. 2) in order to take

into account the conductors:

&o —03 &~ —~ w.

This implies that kl = 1 and k~ = 1; the expressions (16) given

by Coen can then be found.

Without having to go into details, we would like to mention

the practical problems which are solved (in using the results

shown in Table I).

In a three-dimensional case, we studied the influence of an

upper ground plane and a medium of several dielectrics on the

elements of an equivalent circuit for discontinuities. The curves

obtained recover exactly those given in (3).

In the two-dimensional case, this generalized method of

images allows the propagation in structures shown in Fig. l(b)–(d)

to be treated [4]. Moreover, for coplanar conductors on a

dielectric substrate, the formulas of Table I can be considerably

simplified.

As an hypothesis, let .s2 = 83 (k~ = O). The configuration

[Fig. l(e)] can then be easily treated. The amplitudes of charges

decrease extremely rapidly as shown in Table II.

The geometrical configuration [Fig. l(d) ] allows a configura-

tion identical to the preceding one to be treated but sandwiched.

We can conclude that depending upon the chosen integral

representation, this method allows the two- or three-dimensional

case to be treated by avoiding the singularity of the point source.

This method is very interesting in solving open or semiopen

problems. Knowing Green’s function in a four dielectric medium,

a general program valid for most transmission lines used in

hyperfrequency microelectronics has been realized.
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The Locus of Points of Constant VSWR When

Renormalized to a Different Characteristic Impedance

J. A. G. MALHERBE

Abstract—The 10CUSof points of constant VSWR with respect to ass

impedance ZI, when measured with equipment of characteristic im-
pedance ZO, other than Z,, is found to be a circle that is easily constructed
on a Smith chart. The use of a transparent overlay with various such
circles converts any network analyzer with a Smith chart display to
read swept VSWR values to the new impedance.

In cases where the VSWR of a device is specified with respect

to an impedance 21 other than the characteristic impedance of

the measuring equipment Z. (50 Q), as is often the case with TV

antenna equipment or cables, the VSWR has to be calculated

from complex impedance measurements on a point-by-point

basis. Thus the advantages of having a network analyzer with a

sweep oscillator and Smith chart display are lost because the

normal constant VSWR circles would refer to 20 rather than

21. This letter shows that the locus of points of constant VSWR

to 21 are again circles, and that they can be very easily con-

structed, enabling the use of a transparent overlay and thus

regaining the original network analyzer advantages.
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